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Scattering effects are considered for radiative transfer within randomly dis- 
tributed and binary mixtures in one dimension. The most general formalism is 
developed within the framework of the invariant imbedding method. The length 
L of the random sample thus appears as a new variable. One transmission coef- 
ficient T(L) suffices to specify locally the intensities. By analogy with the 
homogeneous situation, one introduces an effective opacity with ( T ) =  
(1 + c%,L) -I  fulfilling %fr< (or) = pocro + pl~rx (0 and 1 refer, respectively, to the 
components involved in the mixture). Equality is reached when L ~ 0 ,  oo. 
Otherwise, ae~ displays a deep transmission window. It is numerically .expressed 
for three combinations of opacities (cro, ~rl) and average grain sizes (20, 21). 
These results are of crucial concern in optimizing an ICF compression for a 
pellet nonuniformly illuminated by intense laser or ion beams. 

KEY WORDS: Random media; energy transport; Markov processes. 

1. I N T R O D U C T I O N  

Recently, an intense analytical and computational effort has been 
deployed (l-s) to estimate accurately the amount of radiative energy flowing 
through randomly distributed binary mixtures of various kinds of 
materials. On conceptual grounds, this could be partly appreciated as a 
testimony to the sustained interest into the venerable attenuation problem 
introduced in radar physics (6~ and astrophysics. (7) However, it should be 
appreciated that it is only very recently (1 5) that a systematic interest 
has been devoted to understanding the radiation flow through randomly 
distributed mixtures. Plasma physicists engaged in laser or particule- 
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beam-driven thermonuclear research (8'9) were indeed directly concerned. 
Although often quantitatively modest, the radiative energy balance plays a 
crucial role in assessing the credibility of currently investigated com- 
pression schemes. The importance of radiation transport in inertial con- 
finement fusion (ICF) target calculations has been discussed many times. (9) 
It has been pointed out that radiation plays a much more important role in 
ion-beam-driven targets than in laser-fusion targets. This is because of the 
fact that in laser-fusion targets, suprathermal electron transport in general 
is more important than radiation transport and electron thermal conduc- 
tion. In ion-beam fusion targets, on the other hand, radiation transport 
and the electron thermal conduction are the only means of energy transfer. 
The ions deposit energy in high-density target material, which makes 
electron thermal conduction very ineffective. In the absorption region of 
ion-beam targets the temperature increases to a few hundred eV. At these 
temperatures the radiation transport dominates the electron thermal 
conduction. 

The presence of very different materials in the structure of fusion 
pellets produces Rayleigh-Taylor instabilites near the interfaces. These 
instabilities create mixing zones which are spatially localized. They can 
greatly influence radiative transfer and modify hydrodynamic 
compression.~9) 

This type of heterogeneous mixture can be statistically described to 
derive the evolution of the mean radiative intensity and an effective opacity. 
As previously, (~-5) we shall focus attention on the basic and mathematical 
patterns involved in the stochastic differential equations, building up the 
backbone of the theoretical developments we are concerned with. The 
reader be able to transfer our results to other stochastic problems of 
interest. 

We introduce a very simple frame (Fig. 1) for two media labeled as 0 
and 1, respectively, interspersed at random, which we solve exactly in one 
dimension. 

An instantaneous energy propagation is assumed. Moreover, we 
neglect the frequency dependence (6'7) (gray approximation). Many exact 
and accurate results have already been obtained (1-5) for the so-called 
attenuation problem. This means that we have a complete characterization 
for the attenuation at a given location z within a random mix with 
prescribed averaged size grains 2o and 21, and also with opacity ao and a~, 

0 1 0 1 0 1 . . . . . .  

Fig. 1. Binary random mixture (medium 0 and medium 1) in one dimension. 
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respectively. In addition, each medium could be endowed with a specific 
temperature and emission coefficient. Technically speaking, the use of 
master equation methods (~~ allows one to specify a prefactor in front of 
every exponential within a finite sum, while the attenuation coefficients are 
analytically derived from the stochastic parameters (2o, 2l, ao, and al). 

The next step in generalizing this work (1 5) concerns the present paper. 
It is an attempt to incorporate scattering effects (back and forth) in the 
monodirectional model considered up to now. This extension stands as an 
obvious prerequisite before radiation transport theory can be realistically 
considered at higher dimensionality. We are thus considering two radiation 
intensities: I+(z) moving to the right, and I-(z) to the left. For physical 
reasons of rather immediate concern, we concentrate our attention on the 
special case where a given L of random mix receives an initial energy den- 
sity i+ at z = 0 ,  while the extremity z=L is exposed to i . Then, it turns 
out that the master equation approach (l) becomes useless because I + and 
I -  have to be simultaneously prescribed at the left. This explains that L 
should be taken as a new variable, a fact well documented by the so-called 
invariant imbedding method (1~-13) (IIM) developed by many Russian 
workers. In so doing, we introduce an L-dependent transmission coefficient 
T(L). A complete knowledge of T(L) proves sufficient to determine local 
intensities I+-(z, L) for all z values. We are thus led to solve a stochastic 
and well-posed Cauchy problem for T. Its statistical distribution is worked 
out through a suitable master equation when the random mix is given the 
Markov property, the partial differential equation being solved through 
Green functions techniques. This allows us to specify the averages (T) ,  
( T  -1 ) for all L values, together with an L-dependent effective opacity. The 
complete scattering problems is thus formally solved through ( I  +-)(z), 
locally specified. 

The paper is organized as follows. Radiation transport including scat- 
tering is discussed within a one-dimensional framework in Section 2. The 
formal starting point for the whole paper is then given by Eqs. (9)-(11). 
The invariant imbedding method (IIM) is presented in Section 3 and 
Appendix A. The statistics of the transmission coefficient is worked out in 
Section4, together with ( T )  and (T -~ ) .  Green functions techniques 
required to solve the partial differential equations (63) are detailed in 
Appendix B. Exact analytical results are investigated in Section 5, while 
their numerical extension is worked out in Section 6. 

2. R A D I A T I O N  T R A N S P O R T  W I T H  S C A T T E R I N G  ( 1 D )  

It proves convenient to start with Sobolev's notations. (7) They are 
particularly suited for introducing the subject to a nonspecialized audience. 
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Radiation transfer with scattering m one dimension (Sobolev notations). (a) 
Propagation without scattering; (b) propagation with scattering. 

The relevant geometry is displayed in Fig. 2. It leads us to write a 
stationary radiative transport equation in the form 

dI + 
_ _ - -  ( ~ ( z ) I  + + S + 
dz 

dI (1) 
- -  - ( r ( z ) I -  + S -  
d z  

a(z) is the total opacity (attenuation) coeff• 
Source terms S -+ include the scattering coefficient and the thermal 

emission coefficient Sv, If x denotes the proportion of scattered radiation, 
the source terms read 

S+=A[xI+ + ( 1 - x ) [  ] + S ~  
(2) 

S = A E x I - + ( 1 - x ) I + ] + S r  

with A the scattering coefficient. Thermal emission is given by 

S t =  a.bs B ( T ) =  ( a -  A) B(T) (3) 
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B(T) is the usual Planck function (the frequency dependence is omitted 
everywhere). 

In a stationary regime and without any hydrodynamic motion in 
matter, one can put the energy balance in the form 

ff  O'abs(B - -  I) dl'~ dv = 0 (4) 

where the quadrature is taken over angles and frequency. In one dimen- 
sion, ~ is restricted to ~ = { -  1, + 1 }, with 

f aabs[2B--(I + + I - ) ]  dv=O (5) 

Restricting ourselves to a gray approximation, with day/dr = 0, we can use 
frequency-averaged quantities and write 

20"absB = Crabs(/+ + 1-)  

Thus, Eq. (3) yields 

ST = (c~--A)(I + + I - ) / 2  

Equations (2) and (7) finally lead to  

(6) 

(7) 

S + = [ a - A ( 1 - 2 x ) ] I + / 2 +  [ a + A ( 1 - 2 x ) ] I - / 2  

S = [ a + A ( 1 - 2 x ) ] I + / 2 +  [ ( r - A ( 1 - 2 x ) ] I  /2 
(s) 

Putting Eq. (8) into Eq. (1) provides the simple but fundamental system 

with 

d~ + 

dz 

dl -  
dz 

- - -  5 I  + + 5 1 -  

- 5 I  + + 5 I -  

(9) 

6 = [(r + A(1 - 2x)3/2 (10) 

6 may be pictured as a two-state (0, 1) stochastic process with respect to 
the variable z. It corresponds to an absorption taking place either in 0 or 1. 

Natural boundary conditions are 

I+(z=O)=i+ 

I - ( z = L ) = i  
(11) 

822/54/1-2-22 
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Equations (9)-(11) build up a formal starting point for the present work. A 
more physical insight may be gained by considering variables 

E = I + + I -  (energy) 
(12) 

F =  I + - I -  (flux) 

which allow us to express Eq. (9) as 

dF 
- - = 0  & 

(13) 
dE 
- -  = - 2 5 F  
dz 

This corresponds to a conservative medium with a constant flux flowing 
throughout it. It is also instructive to consider a few degenerate situations. 

First, let us consider 5 constant (no mix), so that 

E = - 2 5 F z  + Eo (14) 

Then if the light is incident on the left part only of the random mix with 

i + = 1 ,  i = 0  (15) 

one has 
F = ( I  + S L )  

(16) 
Eo -- (1 + 2ffL)/(1 + 6L) 

with reflection and transmission coefficients given, respectively, as 

R = I - ( 0 ) ,  T = I + ( L )  (17) 

For our conservative case 

and for a constant ff 

R + T = I  (18) 

T = ( I + 0 L )  ~ (19) 

3. I N V A R I A N T  I M B E D D I N G  M E T H O D  ~1~) ( I I M )  

Now, our main objective is to solve the system of Eqs. (9)-(11). It 
cannot be treated consistently through a master equation approach, ~Ll~ 
which requires the conditional probability 

~ ( I  + , I  , ~ , z j I + , I  , ~ , z = 0 )  
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for the joint process (I+, I - ,  5). The key point is that I + and I are not 
simultaneously given at z = 0. IIM gets rid of this difficulty by refor- 
mulating Eqs. (9)-(11) as a Cauchy problem. To simplify notation, 5 is 
now replaced by a. The formal derivation, detailed in Appendix A, 
demonstrates that if I -+ is dependent on (z, L) and also on the limit values 
i+, respectively, taken at z = 0 and z = L, with 

I +- =I+-(z,L, i+, i_) (20) 

and the limit values 

j+-(L,i+,i  ) = I + ( L , L , i + , i  ) (21) 

then one can recast Eqs. (9)-(11) in the form 

with 

and 

~I+ ? ( - ~ + + a i  ) ~ I - = 0  (22a) 
~L 3i_ 

0I + ( - a j  + ai QI- 0 
0L + _ ) & . ~ =  (22b) 

I+(z, z, i+, i_ )=j+(z ,  i+, i_) 

I - ( z , z , i + , i  ) = j - ( z , i + , i  ) = i  

Oj + 3j + 
--OL b ( - a J  + + ai-  ) ~t = -aJ+ + cxi- 

j+(0,  i + , i  ) = i +  

The linearity of Eq. (24) allows us to look for a solution in the form 

(23a) 

(23b) 

(24) 

(25) 

j + ( L , i + , i  ) = R ( L ) i _  + T(L)i+ 

so Eqs. (24), (25) may be rewritten as 

(26) 

dR 
--~ = - c r (  R - 1 )2 

dT Z=o-(R-1)T 
(27) 

with 

R (0 )= 0 ,  T(0)= 1 (28) 
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Equations (27)-(28) yield at once 

where 

dT 
- -  = - a T  2 
dL 

T(0) = 1, T +  R = 1 

It is also possible to solve Eqs. (22a), (22b) in the form 

I + =A+(z ,  L)i+ +B+(z, L)i  

I -  = A - ( z ,  L) i_  + B-(z ,  L)i  

For instance, Eqs. (22a), (23a) yield 

dA + dB + 
- - - a T B  + =0,  ~ + a T B  + = 0  
dL dL 

B+(z , z )= I -  T(z), A+(z , z )=  T(z) 

With the factorization 

this leads to 

B+(z, L ) = f + ( z )  T(L) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

f + (z) : [I. - T(z)]/r(z) (35) 

r(L)[1 - r(z)] 
B+(z, L ) =  (36) 

T(z) 

A +(z, L ) =  1 - B  + (z, L) (37) 

Thus, one can put Eq. (1) in the form 

T(L)] . T ( L )  
I- : I-T--~j i+ + T - ~ i  (39) 

with I + - 1- = T(L)(i+ - i ). Thus I -+ is expressed in terms of a umque 
and macroscopic transmission coefficient T(z) given as a solution of the dif- 
ferential equation (29) with stochastic coefficient a. We are now faced with 
a Cauchy problem with prescribed initial conditions. Now, it is possible to 
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investigate the statistical properties of T through a master equation 
approach. It is readily checked that I -+ derived from Eqs. (38)-(39) with T 
given by Eq. (29) are solutions of the system (9)-(11). It is also a rather 
easy matter to rederive Eqs. (38)-(39) in our conservative case. A 
straightforward left-right balance for the intensities considered at limit 
points z = 0 and z = L (see Fig. 3a) together with a similar one taken at the 
running point z (Fig. 3b) allow us to express the outgoing intensities in 
terms of T(z) as 

Z+(z) = [1 - T(z)] I (z) + T(z)i+ (38') 

[ 1 - T ( L ) ] i +  + T ( L ) i _ = [ 1 - T ( z ) ] i +  + T(z) I - (z )  (39') 

in a form equivalent to Eqs. (38)-(39). This approach implies a separate 
knowledge of T(z), while it appears sui generis in the previous IIM, which 
can be extended to the nonconservative case with R + T <  1 through two 
coupled equations for R and T. 

(a) 

i+ 1) (t i_ 

I I I 
(t z L 

i F [ I I T ( L )  ] {> 
+ 

T ( L )  
T ( L ) i +  

(b) 

I I 
0 z 

~-- l-(z) 

Fig. 3. Schematics of intensity balances involved in Eqs. (38')-(39'). (a) At extremities z=0 
and L, (b) at a running point z. 
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4. STATISTICS 

4.1. Master  Equation 

Let us recall Eqs. (29)-(30), 

dT -~ = -a(L) T 2 (40) 

T(0) = 1 (41) 

where a denotes a two-state (ao, al)  Markov process with characteristic 
lengths 20, 21. Then (T, a) is also Markovian, and we can write down a 
Liouville master equation (1~ for the joint probability ~(T,  a, L), 

where 

aN 0 
O---L- = - g--T ( -- ~T2~) + ff/~ (42) 

(~o(T, L) : ~@(T, a=ao, L)) 
~-k,~(T,L)=~(T.a=o~,L) (43) 

and also 

o o )  - ,44, 

It remains to solve Eq. (42) with the initial L = 0 condition 

~(T'L=O)=c~(T--1)( p~ 

p i=2 i (2o+21)  -1, i = 0 ,  1 

(45) 

and the limit constraint 

~ ( T =  1, L) = 0, L = 0 excluded (46) 

within a domain ~ :  {0~< T~< 1, 0~<L~  oo }. Then, it is useful to express 
Eq. (42) in the form 

c?L - a ~  (T2~~ - )~o + L-~I 

~?L = a l  (T2~1)+2o 21 

(47) 
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This is a coupled system of linear partial differential equations with non- 
constant coefficients, and with the problem (45), (46) split on the 
domain 9.  

4.2. Canonical Formulation 

Equation (47) is significantly simplified through the replacements 

X =  1/T (48) 

~o = X2yo( L, X), '-~1 = X2y , (  L, X) (49) 

in the form 

~Yo 63Yo ]To Y1 

0--E = aO#x  ;to ~;tl 

6q Y1 63 Y1 Yo Y1 
63L - o1 - - ~ - ~  20 ;tl 

(50) 

with the limit conditions 

( Y ~  ( X = l ' L ) = O ' L = O e x c l u d e d Y 1  

in 9 ' =  {1 ~<X~< 0% 0~<L~< oe}. 
Equations (50) may be further simplified with 

Yo = e"X + AL Y~, Y1 = e"X + AL Y* 

and 

a = - -  (fro --  (9"1) 

(51) 

(52) 

(53) 

(54) 

(55) 

Equations (50) now become 

0to* 0Yo* Y~* 
OL ao ~ + 21 

or*  63r* r*  
63L = - a 1 ~ + 2 o  

(56) 
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while Eqs. (51) and (52) are replaced by 

(Y~"~ (X,L=O)=6(X-1)e-~(p~ (57) 
Y*/ pl 

( Y0*~ (Z=  1, L) =0, L = 0  excepted (58) 

Y* may be further expressed in terms of Yo*, which yields two second- 
order and decoupled equations. Then, according to Sneddon, (14) it is 
possible to transform these hyperbolic equations into a simple canonical 
form by using 

~=y(X-l-ooL),  t / = y ( X -  1 -a~L) (59) 

Y*(X, L ) =  ~(r t/) (60) 

Equations (56) thus become 

aYo Yl 
#?~ 217(0"0 -- 0"1) 

(61) 
aYl ~o 
a~ 2o~(ao-Ol) 

where, if ao >~ a l, 

V = 2(202,)1/2 (ao - al ) (62) 

Finally, we get the canonical equations 

822o Yo a~ @ § ~ = o 

(63) 
a 2p l  Yl 
a~ @ +-Z =~ 

4.3. Averages  

The canonical expressions may be worked out with standard Green 
functions techniques detailed in Appendix B. This allows us to explain the 
statistical average of a given function f(T) for a fixed L), 

(f(T) )L = f~ f(T)(~l + ~o) dT 

; (') = f ~ [Yo(L,X)+YI(L,X)]dX (64) 
1 
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through Eqs. (48), (49), in the form [Eq. (B.13)] 

t [~/2 L(sin O) 
~ l ~ e  -L/z2p d o e  - 5 ~ ( 2 i - 1 - 2 o  I) 

( )oo,~ l ) ~ -  ~/2 

x f  1 + (~o + ~ i )L /2  + (ao - crl)L sin 0/2 

~ [ L  c ~ 1 7 6  E~ + (po- p,)sin Ol 

f ;,0/~1 "~1/2 r. LGosO] O} 
+ [ ~ )  Io t_(.~o~.,),,j c~ (65) 

in terms of 271 = 2o 1 + 2i-L Here I0 and 1,. are the standard modified Bessel 
functions of first kind with order n = 0 and 1, respectively. 

5. EXACT RESULTS 

5.1. ( T  -1 ) 

Although T statistics is somewhat tricky 
average ( T  -1 ) is readily available from Eq. (29), 

d T  
- -  = -or (L)  T 2 
dL 

in the form 

d(1/T)  
- -  = o ( L )  

el l  

which may be treated by master equation 
replacement 

u = T  - 1  

with 

ON 8 __  
( ~ )  + w~,  

8L 8u 

to access properly, the 

(66) 

approaches, through the 

(67) 
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easily handled through the first moment 

rhu = U~ du 
J 

in the form 

~3fft" = 5 ( P ~  + I~rh" OL Px 

as an intergration by parts. It reads 

with 

Upon introducing 

one readily obtains 

Hence 

i.e., 

0m~ G m~ ml 
"-~ ' - - -  o P o - -  ~ 0  "~ )'1 

6~ml mo ml 

0L = al p~ -~ 20 21 

mo(0) = Po, m j(0) = Pl 

( u )  = m o + m l  

c~L = a ~ 1 7 6  ( a )  

( u ) = ( a ) L + l  

( T  -1)  = 1 + ( a ) L  

which can also be obtained by direct averaging on Eq. (66). 
Moreover, Schwarz' inequality gives 

( T ) ( T - 1 ) > / 1  

Then, let us introduce acrf(L ) according to Eq. (19), so that 

( T )  = (1 -- O'effL) -1 

Vanderhaegen and Deutsch 

(68) 

(69) 

(70) 

(70') 

(71) 

(72) 

(73) 

(73') 

(74) 

(75) 
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Finally, Eqs. (73') and (74) yield the inequality 

O'eft(L) ~< ( a ), all L 

345 

(76) 

5.2. L ~ 0  L imi t  

It is obviously instructive to detail the L = 0 limit of < T ) c ,  in a first- 
order approximation with respect to L. So, we restrict Eq. (65) to its L = 0, 
1 terms, put f ( x ) =  x, and obtain 

< T>L = po(1 -- L/2o)(1 -- a o L )  + p,(1 - L/2o)(1 - a~ L) + 2/(20 + )~1) 

=I-L<o>, 

Then Eq. (75) gives 

<a> = Poao + p l a l  (77) 

ao~--, <,~>, L-,.O (78) 

in agreement with the expectation that the atomic mix model (3) should be 
retrieved as an L--* 0 limit. 

5.3. <T>t in the  L -~  oo L imi t  

Now we look for the dominant term , , ~O(L- I ) .  Introducing the well- 
known z --* 0 limits 

(2~ZZ) 1/2 Io(Z ) ~ e z, (2gz) U2 Ii(z) -,~ e z (79) 

into Eq. (65) yields [ f ( x ) =  x]  

<T>L 
Po e -  L/2~ e L/21 

- - + P l - -  
1 + aoL 1 + alL 

e - ~  ~2 {~[~ coso,l~ 

~[ ~ silo ~'~os0]~O~l~,~4 
+ ( P o -  P l ) - - - ~ - ~  2o+21 

~ { i ~ _ + , ~ o _ ~ , ,  si;o] ~ ~os o,,~l -~ ,80, 

which can be rewritten as 

P 0 e -- L/20 P 1 e L/21 e L/22p 

- -  (2o21)1/4(2~L)1/2 J ( L )  l + a 0  L {- l + a l L  -~ 
(81) 
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with 

J( L ) ~/2 = dO f (O)e  c~(~ (82) 
~- ~/2 

1 + (Po - P l )  sin 0 + 2(2o~,1)1/2 (2o -f- ~'1)--1 COS 0 
r i O ) =  2c0sl/20 [(ao+a1.)/2+(ao--a1.)(sin 0)/2] (83) 

sin 0 ( 1 1 ) cos 0 (84) 
�9 ( o ) = - - T - - \ T - T o  ~ + (~o;~),/2 

By using Watson's lemma, (~5) we derive the L ~  limit of Laplace 
integrals, so that 

(2~z) m f(Oo)e L*(~176 
J ( L )  [ _ L ~ , , ( O o ) ] l / 2  , L --, 00 (85) 

where Oo is such that ~b'(Oo)= O, where 

t g O o  ()~O~l)t/2 ( 1 2  2-7~ -- ~00 1 )  

2)~p 
cos Oo = (2o-~1)1/2, sin Oo = Po - Pl 

~(Oo) = - ~ " ( O o ) =  (22p) 1 

(~0/~1)1./4 (0")  1 
f(Oo) = (22p)~/---------~ 

(86) 

Equation (85) may be rewritten as 

J I L )  ~ 
(27r) 1/2 (2021 ) I./4 eL/2# 

<o>,/L (87) 

which when introduced into Eq. (81) yields in the L--, oo limit 

1 
( T ) a  ( a ) L '  L---, oo (88) 

with [through Eq. (75)3 

~refr ~ ( a ) ,  L ~ oo (89) 
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5.4. Symmetric Case ho=A 1 ( a o = a l )  

Now,  one has Po = Pl = 0.5. It  is easily checked that  the distr ibution is 
a normal ized  one with ( 1 ) c  = 1, all L. According to Eq. (65), 

( 1 ) L  = e - I  + l e - t  ~/2  [11(l cos O) + Io(l  cos O) cos O]  dO, 
" 0  

l = L / 2  o 

(90) 

On  the other  hand,  it is known that  (16) 

f]/2 cos(2#x)  Izv(2a cos x )  dx  = �89  Iv+~(a)  (91) 

For  v = 1/2, /~ = 0, a = l/2, one thus gets 

o '~/2 I~(l  cos O) dO = �89 2 (92) 

while for v = 0, p = 1/2, a = l/2, one obtains  

o ~/2 Io(l  cos O) cos O dO = �89 I1/2(l/2) (93) 

The final result ( 1 )L = 1 makes  its appearance  through 

(2nz) v2 I1/2(z) = e z - e - z  
(94) 

(2nz)  m I 1/2(z) = e z + e - Z  

( o  ) = (Oo + a~)/2 (95) 

It  is easily proved  that  

( T - l )  = 1 + ( a ) L ,  

5.5. ( I ) ( z )  Profile 

Taking  averages on Eqs. (38)-(39)  yields at once 

( I  + ) ( z )  = 1 + ( T ( L ) )  - \ T ( z ) / J  i+ + L\ ~-~/-  ( r ( L ) )  i_(96)  

<1_ >(z)= [1_/r(L)\] /r(L)\ \ ~--~/3 i+ + \ - - ~ / i  (97) 
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To proceed further, one needs to explain (T(L)/T(z)).  This could be 
achieved with 

T ( L ) \  = 
T(z) / 

fr0r0=o fv,=o ~(T(L)  = T1 ] T(z) = To) 
= 1  ~ T I = T  0 

x ~ ( r ( z ) =  To)~oodT ~ dTO (98) 

where 

~(T(L)  = T1 IT(z)= To)= ~r0,:(Tl, L) 

is given by #(T, L), the solution of the master equation 

8L - ~?T~ ( -  ~T2~) + I~# (99) 

with (0 ~< T 1 ~< To, z ~< L ~< oo ) the limit value 

~ = 6( T1- To) ( P~ 
\ P l /  

z = L  

The variable transformation 

T ' =  T1 T? 1, L ' =  T o ( L - z  ) 

ffz, = #T?I ,  P '  = ~ To 
(100) 

allows us to put Eq. (99) in the form 

c~L' c~T' (--8T'2~) + ~ ' ~  
(101) 

~ ( L ' = 0 ,  T ' ) = 3 ( 1 -  T') Pl 

already solved in Section4.1. The knowledge of ~(T, z) is sufficient to 
formaly characterize (1 +)(z) and ( I ) ( z ) .  

6. N U M E R I C A L  R E S U L T S  

A deeper exploration of the present formalism now requires a 
systematic numerical approach. For these purposes, ( 1 ) r ,  ( T  - I )L,  and 
( T ) L  data are reported in Tables I-III as a function of L. They are 
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Table I. (1)L, ( T-1)L, and (T)L deduced from Eq. (65) as well as 1 + (a)L 
with Go=9.0999, al =0.1, ho=0.111, hi =1,  and hp=0.0999 

L (1)L (1/T)L 1 + ( a ) L  ( T )  

20 -4 1. + 10 -7 1.00010 1.000099 0.9999 
10 I 1. + 10 -4 1.1001 1.0999 0.9363 

0.5 1. + 2 x 10-4 1.5006 1.4999 0.7776 
1. 1 + 9 x 10-5 2.0006 1.9999 0.6305 
2. 0.999990 3.0001 2.9999 0.4393 
5. 0.999999 5.99998 5.99999 0.20741 

10. 0.999999 10.99999 10.99999 0.103767 
20. 0.999999 20.99998 20.99998 0.05108 
50. 0.999999 50.9999 50.99995 0.02018 

100. 0.999999 100.9999 100.9999 0.01004 

parametrized by 00, al, Po, Pl, and ).p for specific cases already considered 
by Levermore et a/. (4) in a related but different context. Under the 
assumption of inhomogeneou s Markov statistics, these authors used the 
master equation formalism to derive the ensemble-averaged intensity and 
the distribution for the particle density as solutions of two coupled 
equations through an ad hoc approximation for the scattering processes in 
their rhs. For all of them, the expected relationships [Eq. (65)] 

( 1 ) L = I  
(102) 

( T - 1 ) L =  1 + ( c r ) L  

are satisfied with a very high accuracy. Moreover, it is confirmed that 
~rerf~< (or) with the equality fulfilled in the L ~ 0  and L---} oo limits. ~efr 

Tablell. (1)L, (T-1)L,  and (T)L deduced from Eq.(65) as well a s l + ( o ) L  
with Go=9.0999, G1 =0.1, ho=1.1111, hi =10, and hn=0.9999 

L (1)L (I /T)L 1 + ( g ) L  ( T )  

10-4 1 + 10 8 1.0001 1.000999 0.9999 
10 -1 1 + 10 s 1.10002 1.0999 0.9426 

0.5 1 + 7 x 10 -s  1.5002 1.49999 0.8588 
1. 1 + 10 4 2.0006 1.99999 0.787 
2. 1 + 2 x 10 4 6.0049 5.9999 0.4374 
5. 1 + 9 x 10 -s  11.005 10.9999 0.2447 

10. 0.999990 21.002 20.9999 0.10500 
20. 0.99999 50.9999 50.9999 0.02822 
50. 0.9999997 100.99988 100.99989 0.011688 

200. 1.5 x 10 11 200.99996 200.99996 0.0053767 
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(1 )L ,  ( T - 1 ) L ,  and (T )L  deduced f rom Eq. (65)  as wel l  as 1 + ( o ) ,  
w i th  Go = 1.98, G1 = 0.02, Ao = ~1 = 5, and h~ = 2.5 

L (1)L (1 / r ) z  1 + (G)L (T)  

10 -4 1 + 10-8 1.000100 1.00001 0.99990 
10 -~ 1 + 10 -5 1.10001 1.1 0.91628 

0.5 1 + 8 x 10 -5 1.5001 1.5 0.74119 
1. 1 + 10-4 2.0003 2. 0.6379 
2. 1 + 3 x 10-4 3.0008 3. 0.52108 
5. 1. + 6 x 10-4 &003 6. 0.329 

10. 1 + 9 x 10 -4 11.0097 11. 0.1752 
20. 1 4- 10 - 3  21.027 21. 0.07100 
50. 1 -? 2 X 10 - 3  51.1077 51. &02210 

100. 1 + 3 x 10 3 101.3 101. 0.01046 

exhib i t s  a u n i q u e  bu t  a s y m m e t r i c  and  be l l - shaped  m i n i m u m  for in ter -  

m e d i a t e  L values ,  wh ich  cou ld  be i n t e rp re t ed  as a t r a n s m i s s i o n  w i n d o w  

(see Figs. 4 -6) .  Th is  u n e x p e c t e d  b u t  po t en t i a l l y  s ignif iant  resul t  for  physics  

app l i ca t i ons  will be d iscussed  m o r e  t h o r o u g h l y  in a f o r t h c o m i n g  work .  

T h e  t a b u l a t e d  resul ts  as well  as those  d i sp layed  in Figs.  4 - 6  p r o v i d e  a 

d e m o n s t r a t i v e  i l lus t r a t ion  of  the  a b o v e  me thods .  T h e y  also pe r t a in  to  three  
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sets of parameters (a0, ~rl, 20, 21) distinct enough to point out the 
numerical robustness of the corresponding averaging procedures. This is an 
important feature of the present approach in connection with its implemen- 
tation within numerical codes devoted to the quantitative prediction of ICF 
compression toward a breakeven. In particular, the averaging techniques 
displayed here should allow one to work out a convenient procedure for 
correcting the so-called illumination nonuniformities arising from non- 
symmetrical converging beams on a hollow target plasma. (171 

A P P E N D I X A .  I N V A R I A N T I M B E D D I N G  M E T H O D  m) 

Let us consider a system of differential equations 

dxi 
-df  = Fi[ t, x(t)] (A.1) 

with limiting conditions in the form 

gi~xk(O ) + hikxk( T) = vi (A,2) 

where repeated indices are summed over. x(t) is now taken as x(t, T, v), 
i.e., a function of three variables. Now, let us differentiate with respect to T 
and vk, and invert the order of derivations. We thus obtain 

d r•xi ] OFiOxl 
i Y 7  (t, :r, v) = dt 3 0xl OT 

(A.3) 
c3F~ c~xt 

dt L ax, 

So, for every i, ax,/aT and axi/avk satisfy the same differential equation 
with respect to t. There thus exists a linear relationship relating them, in 
the form 

~xi 2 Ox~ - ~  = ~(T, v ) -  (a.4) 
0vk 

where 2k(T, v) remains to be determined. At t = 0, Eq. (A.4) gives 

~?xi (0, T, v) = 2k(T , axi ~---~ v) ~ (0, T, v) (A.5) 

Multiplying Eq. (A.5) with g ,  (and summing over i), one gets 

0xi 0 c3x~ ( , T, v )=  gti2k(T, v )~- -  (0, T, v) (A.6) 
cvk 
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Similarly, the same procedure applied at t = T with h~ yields 

~xi 
hz, ~ (t, T, v), = 

Adding (A.6) to (A.7) gives 

~x i 
T = h,i~.~(T, v)=-( t ,  T, v),=T ovk 

~ x  i ~ x  i (o, T, v)+ h,~ ~-~ (t, T, v),=T 

= 2k(T, v) ~ [gtixi(0, T, v) + htix~(T, T, v)] 

0 
=;~(T, v ) ~  (v,) 

The last line arrived at through (A.2), and 

0xi Oxi 
gli ~ (0, T, v) + hti ~ (t, Tv) = 2l(T, v) 

One the other hand, Eq. (A.1) introduced into 

d c~xk 0xk 
-~xk(T, T, v)=-~-f  (t, T,v)~=r+-~-(t, T, v),= r 

yields 

~xk t dxk ~-f ( , T, v)/= T=-~-~ (T, T, v)-- Fk[T, x(T, T, v)] 

which, when inserted into (A.8), gives 

d 
d"-'T [glixi(O' T, v) + hlixi(T, T, v ) ]  - h~F~[T, x(T, T, v)J = )~t(T, v) 

According to (A.2), the bracketed term on the lhs reduces to vt, so that 

i.e., 

d 
d--~vl- htiFi[T, x(T, T, v)] = 2t(T, v) 
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(A.7) 

(A.8) 

(A.9) 

(A.10) 

2,(T, v )=  --htiFi[T, x(T, T, v)] (A.11) 
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Introducing (A.11)into (A.4)yields 

c3x i Dx--2(t'~T T' v) + hklFl[T' x(T' T' v)] ~vk (t' T, v )=0  (A.12) 

which, upon the replacement 

R(T, v) = x(T, T, v) (A.13) 

becomes 

~Xi 
~?xi~3T (t, T, v) + hktFt[T, R(T, v)] ~ (t, T, v )=0  

with also 

(A.14) 

hence 

and 

gikRk(O, v) + hikRk(O, v) = vi 

(gik + hik) Rk(O, u = Di 

R(O, v) = (g + h)- lv  (A.17) 

For T=0, (A.2)gives 

x,(t, t, v) = R,(t, v) (A.15) 

Using again (A.9), one thus then derives from (A.14) 

~?xi (T, T, v) Dxi v) OXi t= ~3T = - ~  (t, T, _ r+-~- ( t ,  T,v) 
t-- T 

~3xi = -hklFl[T, R(T, v)] ~ (7", T, v)+ Fi[t, x(T, T, v)] 

whence one obtains a partial differential equation for R, 

DRi ( T' v) + hk'F'[ T' R( T' v)] ~V 'k ( t' v) = Fi[ T' R( T' v) (A.16) 

with the limit requirements 

R,(0, v )=  xi(t, T, V)I,-0, T=0 
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Let us introduce 

X 1 = I + , 

Then Eq. (9) of the text is written 

x2=I-,  t=z, T=L 

where 

d x  

dt F[ t , x ( t ) ]  

F 1 = - a x  1 + ~ x  2, F 2 =  - -GX 1 + ~X  2 

Moreover, condition (11) may be given the form 

~ x ( 0 )  + ~ x ( r )  = v 

with 

and 

Let us also define 

v I = i + ,  V 2 ~ - i _  

j+(L,i+,i_)=I+(L,L,i+,i  ) 

j - (L , i+, i  )=I  (L,L,i+,i ) 

Then Eqs. (A.14)-(A.15) may be transcribed as 

0I + •I + 
O----ff + ( - aj + + a j -  ) O--~--_ = 0 

~ I -  ~ I -  
0---~ + ( - a j+  + a j -  ) 3--~-_ = 0 

where 

j+(z,i+,i )=I+(z,z,i+, i ) 
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(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25)  
j - ( z , i+ , i_ )=I  (z,z,i+,i_) 
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Similarly, Eqs. (16)-(17) become 

with 

~j+ ~+ 

--~L +( -~ j+  +~j - ) ~ =  --,rj+ +,rj 
(A.26a) 

O j -  ~j+ 
LO ---;-+(-aj+ +aj ) ~-~--= --aj + +aj-  (A.26b) 

j+(O,i+,i_)=i+, j+(O,i+, i_)=i  (A.27) 

Moreover, Eqs. (A.20) and (A.23) lead to 

j - (L ,  i+, i_ )=i_  (A.28) 

Finally, the system (A.24), (A.25), (A.26a), and (A.27) may be summarized 
as 

t3I + 0I + 
O---i-+ (--aj + + ai_ ) Oi_ =0 

(A.29) 
0I O----L + ( -aJ+ + ai_ ) 01- = 0 

Oi_ 

with 

and 

I+(L=z , z , i+ , i _ )= j+( z , i+ , i  ) 

I - ( L = z , z , i + , i  ) = i  
(A.30) 

~+ 0j + 
---c3L k ( - a J +  + a i - )  0--~-- = -a j++ai_  (A.31) 

j+(0, i+, i_) = i+ (A.32) 

while (A.26b) reduces to a tautology. 

A P P E N D I X  B. S O L U T I O N  OF EQS. (63)  W I T H  
GREEN F U N C T I O N  M E T H O D S  

Let us recall Eqs. (63), 

a~fo ~_ Po 
e~ ~ 5- = 0 

02il l  ~_ fil  
a~ ~ T = ~  

(B.1) 
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Then the Green function techniques (see, for instance, Sneddon ~14)) allow 
us to solve Eqs. (B1) with the limiting conditions (57), (58) transcribed in 
the (~, r/) variables accoding to Fig. 7. For a given location P(4o, t/o) one 
thus obtains 

yo(p)= [WYo]B_ fAB ( yo C3W_~_( d4 + w_ff_~rl dtl 
(B.2) 

( aw ay~ ) 
P l (P)=  [W371]A-- IA B gl-~-~tl drl + w-~-( d4 

where w(4, r/, r t/o) is a Green function defined by 

~2W W 
- = ~  

#w 
- - = 0 ,  ~/=r/o 
a~ (B.3) 
#w 
- - = 0 ,  ~=~o 

w = l ,  4=r  t/= t/o 

When P is located in zones 1 or 3 (Fig. 7), one thus gets 37o = 371 = 0. On 
the other hand, when P belongs to zone 2 with 4o ~< 0 and qo ~> 0, one has 

370(40, tlo) = w(4 = O, t 1 = O, 4o = O, rlo) Po 5 ( X -  1 - aoL)e - - a  

- ~ P o 6 ( X - 1 ) e  a _ ~ ( 4 = r / , 4 o , ~ / o )  dr 

6 ( X -  1)e-~ ] 
+ w(4 = r/, 40, r/o) P l  y 2 1 ( o . o  o.1) d~/ (B.4) 

P2 

@ 

A1 

P3 

;~-'B 3 

Fig. 7. Domains of definition in the (4, r/) plane for the Green function w used for the 
solution of Eqs. (63) [Eq. (B.1)]. 
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Yo(Co, r/o)=W(C =0, r/=O, Co, r/o=O) pl6(X-- 1 -O'lL)e ~" 

+ P I 6 ( X - 1 ) c  "7- Co, q o , - - = - -  
B O" 0 0"1/ 

6 ( X -  )e ,~7 +w c~176177 ~ p o ~ - _ ~ j  

If we notice that 

6 ( X -  1) dX= - y  IA~ 617(X-  1)] dX 

Eqs. (B.4) and (B.5) become (Co-..<0, qo>~0) 

.9o(Co, %) = Po 6 ( X -  1 - %L)e " 

F o aw 
+ ~ LPoe ~ (c = o, ,7 = o, Co, %) 

z o~(o. o_. ~o._,o!] 
"+Pl  ~)t 1(0.0 __ 0.1) ] 

)~(Co, qo) = P~ 6 ( X -  1 - ~ L ) e  -~ 

- ~  pie -~ (0, O, Co, %) 

e ~ 0_, ~o,_~o!l 
- P o  ~2o(aO-al) J 

(B.5) 

where 

(B.6) 

(B.7) 

w(C, ,7, Co, %) = 1o E , / ( %  - ,l)(C - Co)] (B.8) 

explains the Green function in terms of the usual modified Bessel function 
of first kind and order n = 0. Working backward from the relationships 
(59), one retrieves the initial variables with 

Yo(X, L) = poe /~/;~o 6 ( X -  1 - aoL ) 

+~eO~X ,,+AL[poI, ( ~o ,,~2 p,Io 
2 \----~o) 72,(ao-  a l ) ]  (B.9) 

y l ( x  , L ) =  ple L/~, 6 ( X _  I _ a ~ L )  

+~e~(X_l)+aL[plll(--Co~'/2 pllo 
- $ \ - ~ - o  / -~ ~,~o(O-o-O,)] 



Radiation Transfer in Binary Mixtures 

and 

so that 

Io  = ] '0((  - -  4 0 ~ 0 )  1/2), 

4o = 7 ( X -  1 - ooL), 

I 1 = I6(( - 4o r/o)1/2) 

qo = ~(X - 1 - oIL)  

I +61L<~X<~ 1 +ao L 
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(B.10) 

(B.11) 

(8.12) 

On the other hand, Yo = YI=0,  when X <  1 +alL or X >  l + a o L .  
If one recalls that X =  T -1, Eq. (B.12) becomes 

(1 + aoL) -~ <~ T<~ (1 + alL) -1 (B.12') 

with bounds given by a unique homogeneous medium (0 and 1, respec- 
tively). The introduction of Eq. (B.9) into the second line of Eq. (64) gives 

( f  ( T) ) L = po e- L/~~ f ( l  +loL ) + P~ e- L/'~' (,l + l l  L) 

2Io } (]3.13) 
-/ ~ (ao -  al)(2o + 21) 

where 4o, r/o, A, a, I o, L and 7 are defined by Eqs. (B.1I), (54), (55), 
(B.10), and (62) respectively. Equation (B.13) may be simplified further 
through 

sin O =  [ X -  1 - ( a o + a l ) L / 2 ] [ ( a o - a l ) L / 2 ]  -1 (B.14) 

which yields Eq. (65) in the text. 
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